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Environmental carcinogens
 Genotoxic or non-genotoxic
 Natural or synthetic
 Cooking process, contamination, 

or synthesis in the body
 Avoidable or unavoidable
 Human intake,1.5 g/day (B. Ames)
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Low-dose carcinogenicity curve of genotoxic (mutagenic) carcinogens:  
Extrapolation from high to low doses
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Present concept of chemical carcinogenicity

It is generally considered that genotoxic carcinogens 
have no threshold in carcinogenic potential. This 
hypothesis has led to acceptance of linear curve that 
approach zero at low doses for risk assessment. 
There are, however, limited date available for these 
hypothesis. 
It has been argued that non-threshold theory is 

challenged based on the view that organism possess 
biological responses that can be ameliorate genotoxic 
activities.
Therefore, it is important to resolve this question from 

the view point of cancer risk assessment and 
management.



Merit of a medium-term bioassay for 
carcinogens
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Carcinogen

Metabolic activation：
ultimate carcinogen

DNA adduct formation
Oxidative stress

DNA repair error

Mutation: 
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MeIQx

 One of heterocyclic amines

 Exists in well-cooked fish and meat

 Mutagenicity: positive

 Hepatocarcinogen

 Human exposure level：0.2-2.6 mg/day

2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline



Rat hepatocarcinogenicity of MeIQx at low doses
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Animals： 1,180 male F344 rats，21-day-old
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Big  Blue  Rat
lacI gene：30〜40 copies on 
chromosome 4 in the F344 rat

Blue plaque=Mutation (+)
White plaque=Mutation (-)

(Plaque Color Screening Assay)

Infection E.coli
Incubation containing X-gal

in vitro
packaging

Phage

MeIQx
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Mutation in the lacI gene
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In vivo mutagenicity test in Big Blue rats

DNA isolation
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lacI gene: 30~40 copies on chromosome 4 in the F344 rat
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Frequencies of H-ras mutation and GST-P positive foci 
in the liver of rats treated with MeIQx
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Detection of H-ras mutation: 
Thermosequenase cycle end labeling (TCEL) method
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Initiation activity of MeIQx at low doses
in the rat liver

Animals: 850 male F344 rats, 21-day-old
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MeIQx DNA adduct level and number of 
GST-P positive foci in the damaged liver of rats
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Risk of liver cancer:
Response curves for the carcinogenicity markers 

dependent on the dose of MeIQx

Control level

Response

MeIQx doses

Liver cancer

8-OHdG
H-ras mutation
lacI mutation

Initiation activity

GST-P
positive foci

MeIQx-DNA 
adduct

Conclusion: Existence of a carcinogenic threshold, 
at least a practical threshold  



Assessment of genotoxic carcinogens
at low doses

Effects on various organs
Liver, Colon, Kidney

Effects on various biomarker
1. Carcinogen-DNA adduct
2. In vivo mutagenicity

Mutation frequency of lacI or gpt gene
3. Oxidative DNA damage: 8-OHdG
4. Preneoplastic lesion

Liver: GST-P positive foci
Kidney: atypical tubular hyperplasia
Colon：Aberrant crypt foci (ACF)

5. Tumor 

Weights of evidence



IQ in diet
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Animal: 1,560 male F344 rats, 21-day-old 
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Effects of IQ on development of GST-P positive foci and 
DNA adduct formation in livers of rats 
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One of food-derived heterocyclic amines
Mutagenicity: positive

Daily intake: 0.005-0.3 µg/day

N N

N

CH3

NH2

PhIP

Carcinogenicity: colon



Rat colon carcinogenicity of PhIP at low doses: 
Aberrant crypt foci (ACF) and PhIP-DNA adducts
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PhIP dose (ppm)

Tumor incidence%
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PhIP carcinogenicity in azoxymethane-initiated 
rat colon carcinogenesis
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Animals: 192 male, 6-week-old, F344 rats
Tumor: Adenoma + Carcinoma



N-Nitroso Compounds

 Air, water, and food, 
notably in nitrite-treated meat and fish products

 in vivo formation from nitrites or nitrates
and secondary amines 

 Diethylnitrosamine
 Dimethylnitrosamine
 Mutagen
 Hepatocarcinogen
 Daily intake : μg/day range level



Rat hepatocarcinogenicity of N-nitroso compounds: 
Induction of GST-P positive foci

male F344, 21-day-old, 1,957 rats 
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LacI mutation frequency and development of GST-P positive foci in 
the liver of Big Blue rats treated with DEN for 16 weeks
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Food additive 
Contaminant in tap water

Genotoxicity
Ames test: +
Chromosome aberration test: +
Micronucleus assay: +

Renal carcinogenicity in rats
 ³250 ppm: +   (Kurokawa Y, 1983)

Potasium bromate
(KBrO3)

O-

Br
OO

K+

Potasium bromate



Mutation frequencies and oxidative DNA damage in kidney of Big Blue rats 
treated with potassium bromate 
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Promotion effects of KBrO3 in kidney carcinogenesis 
induced by EHEN in Wistar rats 

* 500 ® 250 ppm from week 12Animal: 240, 6-week-old, male Wistar rats
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Response curves for the effects of 
genotoxic carcinogens dependent on the dose

Dose used 
in the previous 

experiment

Carcinogenicity at high dose

Dose used 
in the 

present 
experiment

Dose

Carcinogenicity at low dose

Existence of threshold (practical or perfect)

Conclusions



Recently, the concepts of “practical” and “perfect” 
thresholds for genotoxic carcinogens have been 
proposed.  In these cases,  activities of carcinogens 
are usually associated with a no-observed effect level 
(NOEL).  

Thresholds in carcinogenicity



Genotoxic carcinogens and thresholds
1. Primary mutagenic carcinogen

→ Practical threshold
: Heterocyclic amines, N-nitroso compounds

2. Secondary mutagenic carcinogen
→ Perfect threshold

: Potassium bromate
3. Primary or secondary mutagenic carcinogen, but

carcinogenicity based on cytotoxic mechanism 
→ Perfect threshold 
: 1,4-Dioxane

4. Genotoxic, but non-mutagenic carcinogen
→ Perfect threshold 
: Dimethylarsinic acid



Since the threshold exists for genotoxic 
carcinogens, we should accept it for human risk 
assessment and management of environmental 
carcinogens, in particular for substances 
contained in food at low doses.

Risk assessment for genotoxic 
carcinogens in near future 
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